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I. INTRODUCTION

The basic concepts of an axial-or beam-mode helical antenna were cs-
tablished by Kraus [Refs, 1,2] in 1947 and summarized by Harris [Ref. 3].
More recently, Maclean and Kouyoumjian [Ref. 4], Maclean and Farvis [Ref, 5]
and Maclean [Ref. 6] investigated the bandwidth characteristics and the low-
and high-frequency limits for a class of helical antennas. The helical beam
antenna is a very simple structure possessing a number of interesting proper-
ties including wideband impedance characteristics and circularly-polarized
radiation. It requires a simple feed network, and it is simple to build with
relatively predictable results. Some measurements have been made to deter-
mine the characteristics of helical antennas [Refs. 2,4, 7]; however, wide
bandwidth gain characteristics are generally not available in the open literature.
The purpose of the present stndy was to evaluate the pattern and gain charac-
teristics of helical antennas, 1 to 9 wavelengths long, in the UKF frequency
range from about 650 to 1100 MHz. A circular cavity was used to hack the
helix, rather than a conventional ground plane.

Gain and pattern data were obtained on fixed-length (30,8 in. ) heliccs
consisting of -~ 8 to 10 turns with a variable diameter ana pitch angle. Also,
with a fixed diameter and pitch, the gain and pattern characteristics were
measured for helices consisting of 5 to 35 turns, The measured gain and half-
power beamwidth are presented parametr.-ally with respect to C/\ and L/},
where \ is the free space wavelength, C is the circumference and L is the
length of the helix. Empirical relations are derived which express the antenna
gain as a function of wavelength and the helix design parameters (diameter,
pitch angle, and number of turns), In addition, the gain-beamwidth product
an'! the beamwidth and gain factors are examined. For this study all the
helices were wound with a uniform diameter. It is shown in a separate study
[Refs. 8 and 9] that by tapering the last two turns of the helix, the VSWR, pat-
tern and axial ratio characteristics can be improved significantly over those

of a completely uniform helix.
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II. GENERAL DISCUSSION

A, DESCRIPTION OF ANTENNAS

The antenna was made by windiag 3/16-in. diameter copper tubing
around a styrofoam cylindrical form. The helix diameter is defined as the
center-to-center distance of the copper wire, A 1,125-in. diameter alumi-
num tubing was inserted coaxially into the foam to provide mechanical
rigidity. A circular cavity was used to reduce the back radiation and en-
hance the forward gain. A cavity diameter of 10,3 in. was found to be ap-
proximately optimum for a 10-turn helix based on measurements. The
overall length of the helix = NS + LF’ where N = number of turns, S = se-
paration between turns, and LF = length of the feed point ~0. 8 in, (LF is
the distance from the cavity bottom to the start of the first turn of the helix).

Figure 1 shows the mechanical arrangement,
B. MEASUREMENTS

V5WR, gain, radiation patterns, and axial ratio measurements were
mad~ on the various helices described in this report. The VSWR charac-
teristics of the various helices are similar over the frequency range of
interest; thus, only representative curves will be shown. The gain, radia-
tion patterns or halfpower beamwidths (HPBW), and axial ratios will be
shown for cach u. the helix antennas.

A microstrip transformuer, constructed from a teflon-fiberglaes
printed circuit board and placed on the bottom of the cavity (inside), was
used to match the helix impedance (~1400) to a 500 coaxial input, The
4.7-in, length transformer consisted of a linear taper of the microstrip
width. The impedance characterisiics of a 5-turn helix with and without
the impedance matching transformer are shown in Fig., 2. Figure 3 de-
picts the VSWR response measured at the input of the matching transformer

of a 5-, 12-, and 35-turn uniform helix.
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The pain, pattern and axial ratio measurement, were made on an
antenna range with a spacing between the helix and source antenna of 30
to 60 ft and with the antennas approximately 16 ft above the ground., Re-
peated measurements at different range distances were made and averaged
to minimize the effects of multipath errors. To minimize the parallax in
the pattern measurements, the helix was rotated about the helix phase center
which was estimated to be approximately 1/4 e length of the helix from the
feed point [Ref. 10].

Gain measurements were accompnlished by the "substitution'' method.
The phase ceater of the helix was used as the spatial reference plane; i.e.,
the standard gain antenna was placed at the spatial reference plane. A
linearly-polarized reference-gain horn (Nurad, Inc., Model 7 RH) antenna
was calibrated using the conventional ''two-antenna'' method, Using a linearly-
polarized source antenna, the gain of the helix was obtained by comparing the
total received power in two orthogonal polarizations of the helix and the power

received by the reference-~gain antenna, The helix antenna gain with respect

to a circularly-polarized illuminating source was computed by measuring the
axial ratio and correcting for the polarization mismatch loss with respect

to circular polarization. Repeated measurements were made to improve the
accuracy. Thus, the gain data presented herein represents a ''smooth-fit"
curve te the data points.

The axial ratios and HPBWs represent average values as determined
from two or more repeated pattern measurements in two principal planes of
the helix and/or at different range distances between the helix and the source.
In addition, some of the data were obtained by repeated measurements of a
second helix constructed with the same mecchanical dimensions. Generally,
the axial ratio variations were less than a few-tenths of a dB and the HPBWs
are within 1 1° in the two principal planes (@ = 0° and 900). Beam symmetry

were reasonably good for all the helices; thus, patterns will be shown for

only one principal plane, x
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III, GAIN AND PATTERN CHARACTERISTICS

A, FIXED LENGTH HELIX

Parametric evaluations were made to establish the gain and pattern

‘characteristics of a fixed length helix with 1) a variable pitch angle and a

constant diamet_ter, and 2) a variable diameter and a fixed number of turns
(N = 10).

The gain vs frequency characteristics of a 30.8-in. long and 4.3-in,
diameter helix are shown in.Fig. 4, for three helix pitch angles (o = 12, 50,
13.5° and 14.5°), Note the 30.8-in, length dimension includes 0, 8-in, for
the feed strap., For these helices, the gain peaks approximately at C/)\
~ 1,13 to 1. 14. The helix with a smaller pitch angle (more turns per unit
length) vields a higher peak gain and a lower cutoff frequency., Twu illustrate
the frequency dependence, the dotted line shows a gain-frequency slope pro-
portional to f3, where f = frequency. Thus, it appear= that the gain-frequency
characteristics of Fig. 4 with N = 8,6 to 10 turns are in general agreement
with Kraus [Refs. 1,2] for C/A < 1.1, However, as will be shown later,
experimental data indicate that the gain-slope depends on the antenna length
and is approximately proportional to f N .

Figure 5 shows the gain vs frequency characteristics of a 30, 8-in.
long helix (N =~ 10 turns) with variable diameter and pitch angle. The peak
gains are approximately the same and occur at C/% ~ 1.135 on the average,
A slightly higher peak gain is observed for the larger diameter (D = 4, 69 in.)
helix with a smaller pitch angle, but the bandwidth is narrower, The gain
curves also show little change at the low frequency end for the 4, 13-in. and
4.23-in, diameter helicese. However, a higher upper-frequency limit, and
thus wider bandwidth, is attained for helices with a larger pitch angle, which
agrees with theory,

Based on the gain data of Figs. 4 and 5, the peak gain may be empirically
expressed as

VN7/2

_ ap \ VIt 2-1 /ns \ 08 [iap 12.5°
G, = 83 (57— S —_— (1)

P

A

“p tan o
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where A _ is the wavelength at peak gain and o is the pitch angle. Note that

S = mD tan @ and NS = constant for a fixed length helix. The computed

values are within + 0.1 dB of the measured data as depicted in Fig. 6. The

3 data points indicated by o were obtained by varying the diameter and pitch

. ' angle while keeping the length constant with N ~ 10 turns, and those indicated
| by & were obtained by varying the pitch angle while keeping the length and

iL diameter constant (N ~ 8,6 to 10 turns), The diameters of the various ex-

; perimental helices are shown on the top of the figure., It is also interesting

: . to note that, for these fixed-length helices, the peak gains occur at nearly

; the same circumference TD/A ~ 1,135 as shown in Fig. 6.

: The radiation patterns for a 30, 8-in, long, 10-turn helix with D =

§ 4,42 in, and o = 12,2% are shown in Fig, 7. The measured patterns at

X 1030 MHz (C/A = 1.21) show thatthe first sidelobes begin to merge with

the main lobe, which effectively increases the HPBW with a corresponding
reduction in gain. At 1067 MHz (C/)\ = 1,25) the main lobe has encompassed
the first sidelobes with a marked drop in gain as can be seen from Fig. 5.

To illustrate the pattern symmetry, two principal plane cuts are shown for
725, 850 and 1000 MHz., Rather than presenting all of the measured patterns,
the HPBWs are plotted in Fig. 8 for the 4.3-in. diameter helix with variable
pitch angles (11.52 12.5%nd 13.5°), and in Fig. 9 for the 30. 8-in, length
helix with variable diameters (4. 13 to 4. 69 inches), A slope proportional to
F':‘}/2 is shown for reference in Figs. 8 and 9.

To provide paramectiric design equations for helices, Kraus [Ref, 2]
has suggested the following relations for the gain and HPBW as a function
of C/A and L/A for constant pitch helices with 12° « o < 15°, 3/4 < C/A
< 4/3, and N > 3:

G = Kg €/ (LA) (2)
K
HPBW = ——C-—Q-— (3)
(T Lllk
g ~-18-
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where KG ig the gain factor, KB is the HPBW factor, C = nD  is the cir-
cumference and L = NS is the axial length. The measured gain and HPBW

factors for the 30.8-in, length (NS = 30 in.) and 4, 3-in., diameter helices

- ? o

are shown in Figs, 10 and 11, respectively. It can be seen that a higher

gain is obtained with a smaller pitch angle for a given length (note there

are more turns per unit length). Also, it is interesting to note that, for a
given pitch angle, the gain factor remains essentially constant for 0.8 <C/A
< 1,09, Within this range of circumference, the gain factor varies from
about 5.8 for @ = 14.5° to about 7.6 for @ = 12.5° As will be shown later,

the gain and HPBW factors [Eqgs, (2) and (3)] are relatively coastant only for

helices with approximately 10 turns.

Based on a large number of pattern measurement, Kraus has quasi-
B= 52 for the HPBW, Also, he derived KG = 15 %
for the directive gain (lossless antenna) based on the approximation G =
41,250/92, where 6 is the HPBW in degrees. A Gez product < 41,250 is

generally expected for most practical antennas [Ref. 11] because of minor

empirically established K

lobe radiation and beam shape variations,

The measured HPBW factors of Fig, 11 vary from about 61 to 70
(compared with Kraus' empirical value of 52) for 0.8 < C/) < 1.2, and the
gain factors, varying from about 4.2 te 7.7 over the same C/\A range, are
considerably lower than Kraus' estimated value of 15, The wide beamwidth
characteristica for the Lhelices considered are believed to be partially attri-
buted to 1) the fact that the amplitude and phase characteristics along the
helix probably deviate from those required to satisfy the Hansen-Woodyard
increased directivity condition, 2} the effects of the ground plane or cavity
which may alter the beam shape and minor lobe characteristics, and 3)
construction tolerances.

Another design relation, which is often used, expresses the gain as a
function of the HPBW, or

G = K/& (4)
where 0 = HPBW and K is referred as the gain-beamwidth product. The
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empirical values of the gain-beamwidth product as derived froin the curves
of Figs. 4 and 8 are shown in Fig, 12. For 0.8 < C/A < 1,16, the gain-
beamwidth product varies from 24,000 to 31, 500 as compared with 41,250
when the minor lobes are neglected,

The axial ratio characteristics for a fixed-length helix with a constant
diameter and variable pitch angle are shown in Fig. 13, while those for a
10-¢urn, fixed-length helix and variable diameter are shown in Fig, 14,
Generally, the axial ratio ie less than 1.5 dB for 0.8 <« C/X < 1.2, It has
been shown in a separate study that, by tapering the last 2 turns of the helix,
the axial ratio can be improved considerably over the useful frequency range
of the helix, particularly at the high end of the band [Ref. 8].

B, VARIABLE LENGTH HELIX

Parametric evaluations were made to establish the gain and pattern
characteristics of a constant pitch helix cons sting of 5 to 35 turns. The
4,23-in, diameter was selected sc that the helix would operate over the
UHF test frequencies with a helix circumference ranging from about 0, 75X
to 1,25\, A 12,8° pitch angle was chosen, which corresponds to a spacing
S = 3,03 inches. N was selected as 5, 10, 12, 15, 18, 22, 26, 30, and 35
turns.,

Gain ve frequency for the various values of N are plotted in Fig, 15,
The gain is referred to a circularly polarized illuminating source. The
gain curves reveal that the peak gain occurs at C/\ = 1,155 for N = 5 and
decreases to C/A = 1,07 for N = 35. For reference, the dotted lines pro--
vide an estimate of the gain variations with frequency; e.g., for N = 5 the

gain variea approximately as fz' >

, and for N = 35 the gain follows approxi-
mately.a £~ slope, where { = frequency. Note that the measured gain slope
is proportional to f~ only when N is approximately 10 turns (see also Figs.
4 and 5).

Figure 16 is a plot of the pea gain vs the number of turns for the

4,23-in, diameter helix. The corresponding values of C/A_ are also shown
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in the figure, where A is the wavelength at peak gain. The peak gain is
not quite proportional to the number of turns; i. e., doubling the number
of turns does not yield a 3 dB increase in the peak gain., An examination
of the measured data shows thatthe gain varies approximately as N for X,
f < fp/l. 04 and as f-3 N for f > 1,03 fp, where fp is the frequency at '
peak gain, Based on this observation, the gain may be conveniently ex-

pressed as

o
0
[—
Q
g}
T
(=]
=
\H.‘/ A
K
"
A
n

G= { G, i f=f (5)

f )‘3\/1\7

0.91 G'P (I-._(E—-f; H f =2 1,03 fp
.

where Cp is the peak gain from Eq. (1),
JN+2 -1 0.8 JN/2
G = 8.3 (1D NS tan 12, 5° 6)
P ) )‘p lp tan 12, 8°

Near the peak gain frequency, the gain may be approximated by a suitable

mathematical function which has continuous derivatives and matches the
gain at fp/i. 04, fp' and 1,03 fp. Equation (5) is accurate within + 0,5 dB
to the -5 dB points from the gain peak. The deviation is slightly larger for
the shorter helices probably because the cavity influence is greater, Note
that the pitch angle de' endence was derived from the measured gain data
on the 8, 6= to 10-turr, conatant length helices, and it is also valid for the
present case, @ = 12,8%° and N = 5 to 35 turns. The computed values for
the peak gain are compared with the measured data in Fig. 16, The devia-
tion is within + 0.1 dB.




The gain-frequency responsc or bandwidth is of interest in practice.
For the purpese of this study, we analyze the bandwidth by defining an
allowable gain drop with respect to the peak gain, which in turn determines
the frequency range. Figure 17 depicts the 3 dB and 2 dB bandwidths as a
function of N. The choice between a 3 dB or 2 dB bandwidth would depend
upon the particular application in question. If we denote the upper and lower
frequencies by fh and fﬂ, respectively, then the bandwidth in percent may

be expressed as

fh—f

£
B - - x 100%
fh + t)l,
2

Using the empirical relations in Eq. (5), the bandwidth frequency ratio is

appreximately given by

; 4/(3 M)
h 0,91
-f;— =~ 1,07 (*GTGP) (8) .

The computed bandwidth characteristics for C}/Gp = -3 dB and -2 dB
agree reasonably well with the measured data as shown in Fig., 17.
The bandwidth decreascs as the axial length of the helix increases, This = &
bandwidth behavior follows the same trends as described by Maclean and |
Kouyoumjian [Ref. 4], although these authors employ a sidelobe criterion
rather than a gain criterion. Beyond the -3 dB point (with respect to the
peak), the gain drops off sharply at the high-frequency end as the upper
limit for the axial mode is approached.

The measured radiation patterns are shown in Figs, 18 to 26, The
axial ratio is -- 1 dB over most of the measurement frequency range and
is slightly higher at the band edges, The patterns in the orthogonal plancs
are very similar and the HPBWs are within + i°. The HPBWs derived from

these series of patterns are plotted in Fig, 27 with N as a parameter, At
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Fig. 22 Radiation Patterns of a 18-turn Helix — 4.23%-in. Diameter and
12, 8° Pitch Angle (S = 3.03 in.)
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frequencies a few percent above the peak gain frequency, the patterns be-
gin to deteriorate, The beamwidth broadens rapidly, and the first sidelobes
merge in with the main lobe as the operating frequency approaches the
upper limit, For the longer helices (N > 22), the beam broadening is par-
ticularly noticeable for C/A > 1,15 as shown in Fig. 27.

Based on the gain data measured on the 4,23-in. diameter, constant
pitch helices with « = 12, 8°and N = 5 to 35, parametric helix characteristic
curves were derived in terms of the axial length and circumnference with
respect to wavelength, Figure 28 shows the gain as a function of axial length
NS/A with TD/A as a parameter. Thus, ‘or a specified length and diameter
the helix gain can be estimated. Figure 29 is a similar plot, except that
gain is plotted as a function of the circumference 7D/ with the axial length
NS/X (or L/)) as a parameter. A similar parametric plot for the HP BW
is shown in Fig. 30.

Figure 31 depicts the gain-HPBW product K = Gez based on the mea-~
sured gain data of Fig. 15 and the HPBW data of Fig., 27, This quantity is
useful for estirnating the gain when the HPBW is known, and vice versa.

The gain-HPBW product is not constant but depends on N and frequency.

All curves have been smoothed to within + 5% of the data points.
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IV, CONCLUSIONS

Based on a large amount of gain and pattern measurements, the per-
formance characteristics have been established for a variety of helical
antenna configurations. Parametric curves relafing gain, HPBW, circums-
ference C/A and axial length NS/\ were derived and presented. Empirical
expressions were derived for the antenna gain and bandwidth as a function
nf frequency and the helix design parameters. Generally, the peak gain
occurs at a circumference C/\ that depends on the axial length, ranging
from C/X\ ~ 1,07 for a 35-turn helix to C/\ ~ 1.15 for a 5-turn helix. For
C/\ < 1, the gain-frequency slope varies approximately as fV . At fre-
quencies 5 to 10% above the peak gain frequency, the gain drops off sharply
(o f-3 ) and the pattern characteristics deteriorates rapidly as the helix
upper frequency limit is approached., For a fixed diameter and length, a
higher gain can be achieved with a smaller pitch angle, but a higher upper
frequency limit is attained with a larger pitch angle. The bandwidth, when
defined by the frequencies where the gain is 3 dB below the peak gain,
narrows as the axial length increases, ranging from ~ 42% for N = 5 to 21%
for N = 35,

The gain-beamwidth product, which is often of interest, is not constant

and depends on the axial length and frequency, A larger value is attained
with shorter length helices. On the average, the gain-bearmwidth product
varies {rom 18,000 for N = 35and 0,75 < C/A < 1,1 to 31,000 fer N = 5
and 0.75 < C/A < L,Z.
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